東大グリーンICTプロジェクト 電力危機対策

http://www.gutp.jp/

2011年4月10日 東大グリーンICTプロジェクト

(東京大学 大学院 情報理工学系研究科 教授 江崎浩)

節電対策

- 1. 電力使用量のオンラインリアルタイム見える化
- 2. 高効率照明への取り換え
- 3. ガス空調の利用
- 4. 100V電源プラグでの電力使用量モニタリング
- 5. パソコンの動作モードの管理制御
- 6. サーバ(計算機)の仮想化・集約化
- 7. サーバ(計算機)の移設
- 8. デスクトップパソコン、サーバの ノートPC化
- 9. サーバ室内の節電工夫
- 10. 発電設備の設置

Objective

Energy (Electricity) saving in their chain-stores

Target

All facilities in their store

Real-time displaying of volume of electricity consumption at each section.

Results

Started in January 2006

12% energy saving at maximum

- 1. saving amount in one week corresponds to the benefit by 627 cosmetics sales !!!
- Side-effect; improve royality of enpoyee.

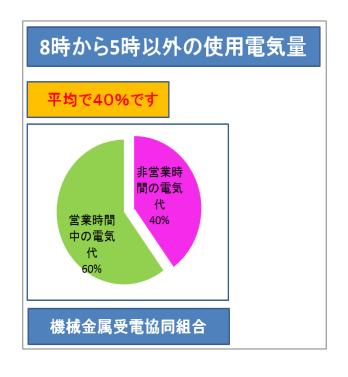
2006年10月26日

省エネシステムで効果

電力消費量12%減る

見える化の効果実績値 横浜金沢産業団地

資料提供: CIMX 社


同業他社比較 削減 15%

横浜金沢産業団地モニタリング 実施報告書 抜粋添付

見える化の効果実績値 横浜金沢産業団地

削減可能性 40%~26%

残業無しの場合	電力量kWh	CO2 kg	金額円 (18.5)	
年間(休日113)	546,266	228,339	10,105,913	
年間(平日252)	2,995,879	1,252,277	55,423,760	
合計	3,542,144	1,480,616	65,529,672	33%

資料提供: CIMX 社

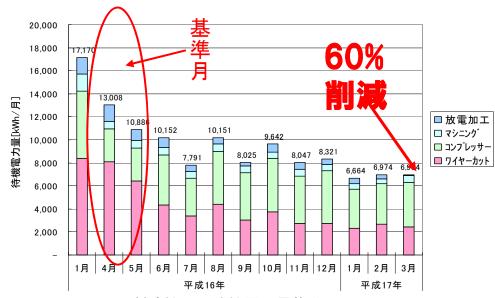
残業2時間場合	電力量kWh	CO2 kg	金額円 (18.5)	
年間(休日113)	546,266	228,339	10,105,913	
年間(平日252)	2,235,210	934,318	41,351,377	
合計	2,781,475	1,162,657	51,457,289	26%

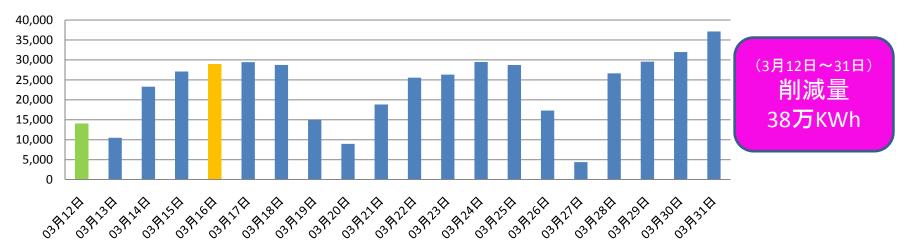
横浜金沢産業団地モニタリング 実施報告書 抜粋添付

金型工場(中島工機 の事例)

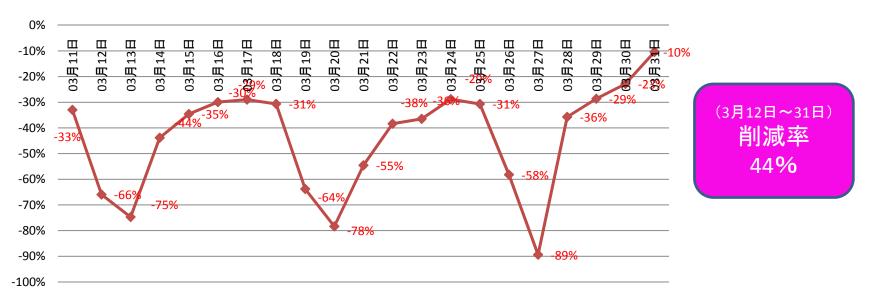
金型工場事例 平成17年度 省エネルギー優秀事例 資源エネルギー庁長官賞受賞 資料提供: CIMX 社

対基準月比 年換算48.3%の待機電力の削減




図8 製造機器の待機電力量推移

http://www.eccj.or.jp/member/member_area/energy_technology/succase/05/c/kan30.html

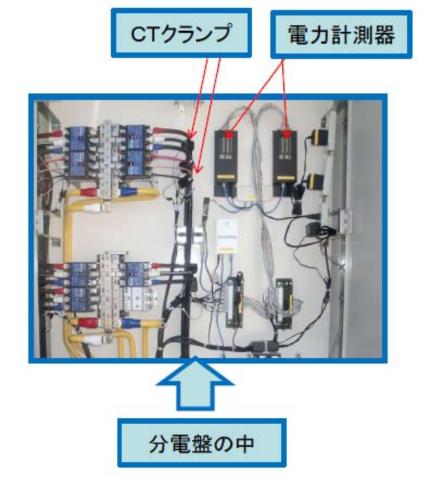

横浜•金沢機械金属団地 電力 速報値

資料提供: CIMX 社

横浜・金沢機械金属団地 電力量 2011年3月31日

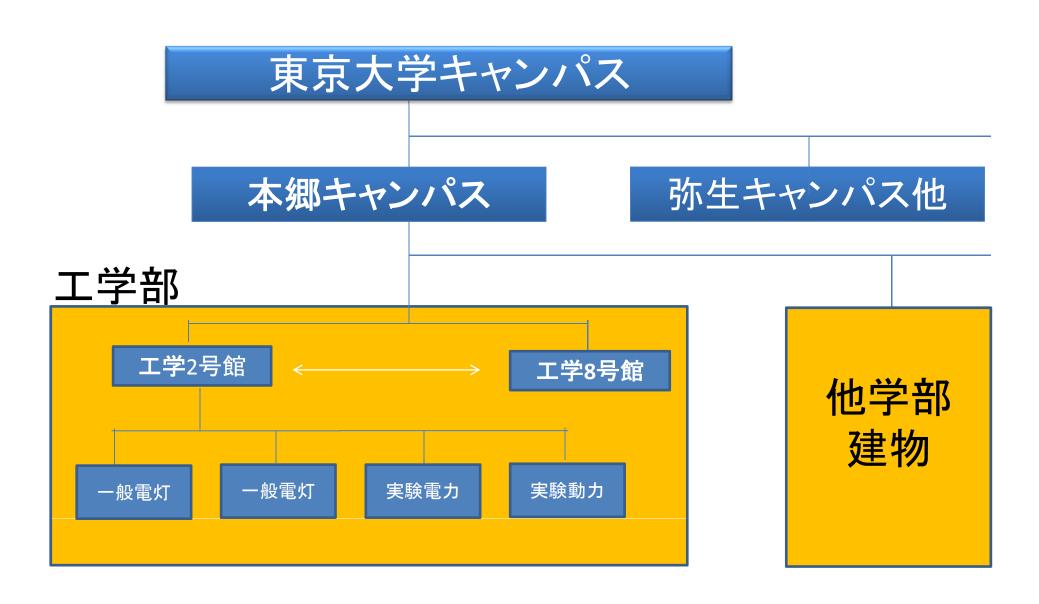
削減率 3月1日~10日平均と比較

資料提供: CIMX 社

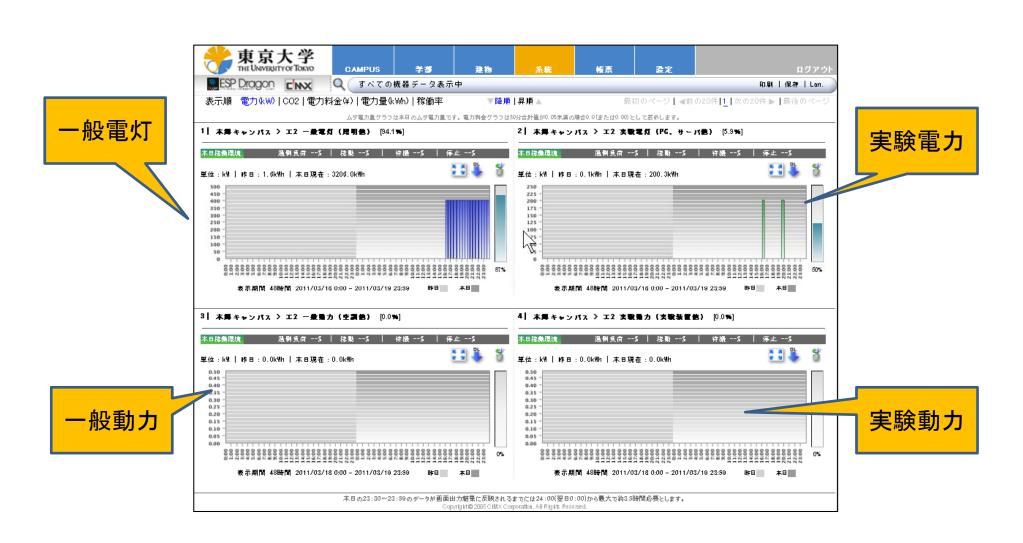


Currently 60 (small) companies could run demand control

Smart Meters connected with Internet and managed by iPad with a cloud platform



資料提供: CIMX 社

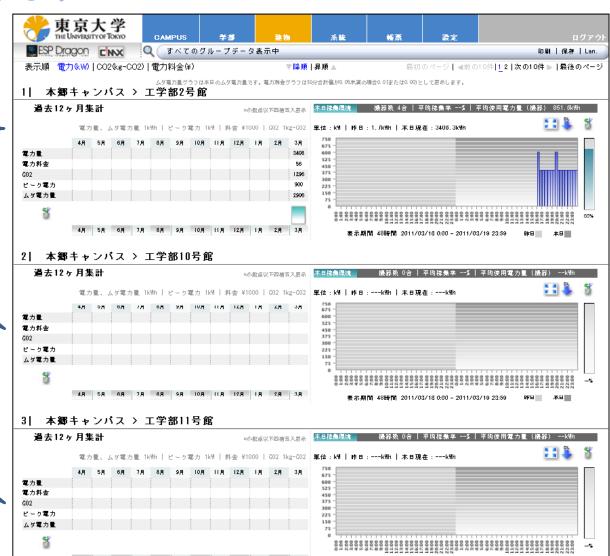

計測分類

電力の見える化 詳細

資料提供: CIMX 社

工学部2号館の内訳が表示されます

電力の見える化 詳細

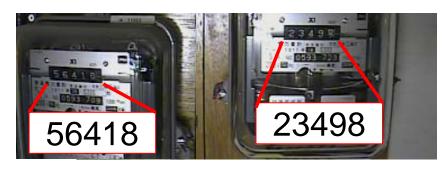

資料提供: CIMX 社

建物ごとに集計されます

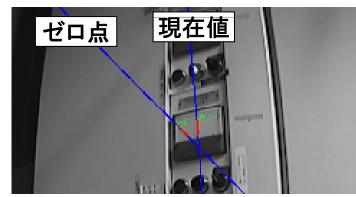
工学部2号館 合計

工学部10号館合計

工学部11号館 合計



画像識別技術によるメータ計測 (東京大本郷キャンパス内工学部10号館事例) by (株)東芝


カメラで撮影したメータの針や数値を画像識別技術により数値化し、IPネットワーク上に送信。 必要な機材は、Webカメラ、処理用PC、ゲートウェイ(FIAPプロトコルに変換する場合)

電力量計の読み取り

電流メータの読み取り

節電対策

- 1. 電力使用量のオンラインリアルタイム見える化
- 2. 高効率照明への取り換え
- 3. ガス空調の利用
- 4. 100V電源プラグでの電力使用量モニタリング
- 5. パソコンの動作モードの管理制御
- 6. サーバ(計算機)の仮想化・集約化
- 7. サーバ(計算機)の移設
- 8. デスクトップパソコン、サーバの ノートPC化
- 9. サーバ室内の節電工夫
- 10. 発電設備の設置

LED照明の導入効果

(*)一般のオフィスでは、約30%が照明用電力

• 事業所事例

- (1) 大塚紹介本社ビル: 37.6%削減(注1)
- (2) 飲食店: 90.2%削減, 89.4%削減
- (3) 倉庫業: 66%削減
- (4) 印刷業: 69%削減
- (5) 夜間サイン: 20%削減

• LED照明

- 200W-300W相当 ==> 55W (82%削減)
- 300W-400W相当 ==> 80W (80%削減)
- 400W-500W相当 ==> 110W (78%削減)

資料提供: 大塚商会

(注1) 多数のHf蛍光灯が既設

考察: LED照明による電力削減

- 倉庫の事例: 25.6%の電力量削減
 - 照明は、全体の約30%
 - 照明のLED化で照明の電力使用量は約80%削減
 - 30%x80% = 24% となり、建屋全体の電力消費量の約24%の削減に寄与することになり、実データとの整合性が取れる。
- 大塚商会本社ビル 1階-3階: 37.6%の削減
 - 照明のスポット化が行われることになるので、 トータルとしての照度は下がってしまう。
 - 日本のオフィス・家庭の照度は、国際的には、明るすぎるとされている。

大塚商会本社ビル LED照明導入のご紹介

【従来照明】

1F: コンパクト形蛍光ランプ16W~水銀灯100W

2F: コンパクト形蛍光ランプ16W~コンパクト形蛍光灯32W

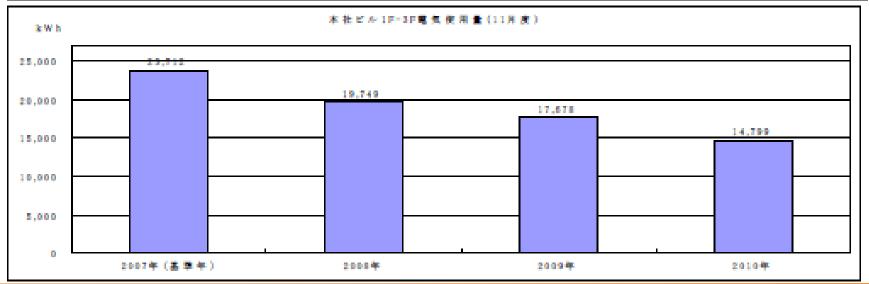
3F: コンパクト形蛍光ランプ16W~コンパクト形蛍光ランプ42W 計476灯

8491

#t379XJ

計301灯 [

[LED照明]


LED 8W~22W \$\f379\f3 LED 4W~16W \$\f301\f3 LED 4W~22W \$\f476

灯

大塚商会本社ビル LED照明導入による電気使用量削減効果

-11月度単月比較-

	2007年(基準年)	2008年	2009年	2010年
1F照明	従来照明	LED化(全部)	-	-
2F服明	従来照明	LED化(一部)	LED化(一部)	LED化(全部)
3F服明	従来照明	LED化(一部)	LED化(一部)	LED化(全部)
11月度電気使用量(kWh)	23,712	19,749	17,678	14,799
2007年比 削減量		3,963	6,035	8,913
2007年比 削減率		16.7%	25.4%	37.6%

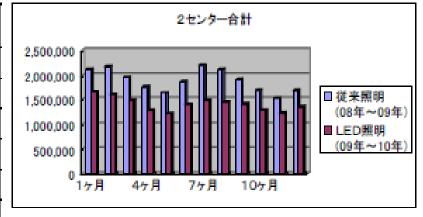
4. LED照明導入による電気代削減事例 [サンワサプライ株式会社機]

【従来照明】

東京物流センター: 水銀灯400W計154灯岡山物流センター: 水銀灯400W計 96灯

【LED照明】

LED 72W 計154灯 LED 72W 計 96灯


4. LED照明導入による電気代削減事例 [サンワサプライ株式会社機]

▶【2センター合計】 LED照明導入による電気代削減効果

【2センター合計】

(単位:円)

導入経過月	LED照明 (09年~10年)	従来照明 (08年~09年)	削減量	削減率
1ヶ月	1,658,035	2,119,371	-461,336	-21.8%
2ヶ月	1,605,121	2,175,682	-570,561	-26.2%
3ヶ月	1,486,346	1,966,298	-479,952	-24.4%
4ヶ月	1,285,051	1,763,281	-478,230	-27.1%
5ヶ月	1,220,238	1,641,455	-421,217	-25.7%
6ヶ月	1,403,823	1,867,528	-463,705	-24.8%
7ヶ月	1,485,252	2,204,106	-718,854	-32.6%
8ヶ月	1,445,554	2,115,659	-670,105	-31.7%
9ヶ月	1,410,006	1,917,023	-507,017	-26.4%
10ヶ月	1,298,104	1,694,612	-396,508	-23.4%
11ヶ月	1,229,108	1,529,782	-300,674	-19.7%
12ヶ月	1,355,353	1,686,698	-331,345	-19.6%
合計	16,881,991	22,681,495	-5,799,504	-25.6%

倉庫水銀灯のLED照明への入替えにより・・・

- ▶年間579万円の電気代を削減
- <u>2センター全体の電気代の</u>
 25. 6%削減を実現

[※]照明設備・空調設備・物流設備等を含む物流センター全体の電気代

節電対策

- 1. 電力使用量のオンラインリアルタイム見える化
- 2. 高効率照明への取り換え
- 3. ガス空調の利用
- 4. 100V電源プラグでの電力使用量モニタリング
- 5. パソコンの動作モードの管理制御
- 6. サーバ(計算機)の仮想化・集約化
- 7. サーバ(計算機)の移設
- 8. デスクトップパソコン、サーバの ノートPC化
- 9. サーバ室内の節電工夫
- 10. 発電設備の設置

ガス駆動型 空調(GHP)の利用

- GHP は、EHP(電気駆動型空調)と比較して、熱交換動作をガスで行うため、電力使用量はEHPと比較して 10%以下になる。
 - サーバ室の移設
 - GHP利用のスペースの有効利用
 - (*) 工学部2号館は、約半分がGHP(能力はEHPとほぼ同等)。会議室、講義室は、すべて GHP。
- 発電機能を持ち、ほとんど電力を消費しない GHP(100W以下の電力使用量)も存在する。

【注意】部屋の使用目的ごとに、空調の仕様が異なるので、詳細の確認が必要。